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to verify the conversion. Then a number of calculations of droplet distortion

and breakup due to shear flows were made. Qualitative comparisons to experimental
results were made for the case when the droplet density and external fluid density were
nearly equal. Our calculation and the experiments by Mason and coworkers showed small
droplets torn off the large drop by the forces in the shear flow., A preliminary
calculation of a droplet-droplet collision shows the distortion of droplets before they '.
collide. Forced-flow and inflow-outflow boundary conditions, needed to do quantitative
comparisons to experimental shear flows, were added to the model.
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SUMMARY

The objective of the research in this program was to develop Langrangian meth-
ods on triangular grids and apply these methods to the calculation of life-history and
dynamics of fuel droplets. During the research period, major advances were made both
in numerical technology and in the solution of problems so difficult that they have not
been attempted before.

With respect to numerical technology, the two-dimensional code SPLISH was con-
verted to a VAX and then to a CRAY computer. New graphics systems were developed.
Further testing of the basic SPLISH hydrodynamic algorithms as well as the surface
tension algorithm were performed on internal gravity and capillary waves. A reor-
ganization of the computer code itself is nearly complete. This will make the code
user-friendly and portable. Now it should be much easier to use, and therefore useable
on many new kinds of problems.

First, previously calculated flows of the distortion and breakup of a droplet due
to differences in flow velocities between the droplet and the external media were re-
computed to verify the conversion. Then a number of calculations of droplet distortion
and breakup due to shear flows were made. Qualitative comparisons to experimental
results were made for the case when the droplet density and external fluid density were
nearly equal. Our calculation and the experiments by Mason and coworkers showed
small droplets torn off the large drop by the forces in the shear flow. A preliminary
calculation of a droplet-droplet collision shows the distortion of droplets before they
collide. Forced-flow and inflow-outflow boundary conditions, needed to do quantitative

comparisons to experimental shear flows. were added to the model.

RESEARCH OBJECTIVES

Our major research objective was to develop models that could be used to give
the basic information needed for constructing appropriate models for dense sprays.

This is necessary because the limiting assumptions in current drop models imply that
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@' the predictions given by spray models in dense or high-pressure spray regimes are

not as accurate as they could be. Better drop models should be formulated using )
information about collision and breakup rates relating to droplet size and velocity.
However such rate calculations are complicated by a rich variety of breakup, collision,
and coalescence modes that can occur in different pressure and velocity regimes. For
example, collisions can result in coalescence. elastic rebound, inelastic scattering with
increased drop deformation and oscillation or shattering into two or more droplets.
In addition, rapidly rotating or highly deformed drops may split into several drops,
shattering may occur at critical pressures, and hydrodynamic breakup of drops may
occur through several modes, including the bag breakup mode and droplet stripping
due to velocity gradients in the exterior flow field. Drop transport is directly affected
by these phenomena, and the presence of the drops affects the flow field in both the
mean flow and turbulent fluctuations.
Our approach was to develop the numerical technology associated with Lagrangian
methods on triangular grids to the point where it could be used to model the life-history
‘-‘ and dynamics of fuel droplets. In particular these methods would be used to determine
the conditions under which fuel droplets greatly distort and shatter, as would occur in

) shear flows and droplet collisions.

WORK PERFORMED

The basis of the numerical method is a Lagrangian convection algorithm which

daat SR Sl Bk o

uses a triangular grid instead of a quadrilateral grid. In this method, the grid dy-

namically restructures itself according to preprogrammed criteria. In addition, new

triangles are added or old triangles are deleted to change the resolution, also according

to preprogrammed criteria. Triangle deletion allows the evolution of singly connected

regions to multiconnected regions, such as would occur when droplets break up. or the

evolution of multiconnected regions to singly connected regions, such as would occur

(RN g™

during droplet collision. Since the algorithm is Lagrangian, interfaces can be tracked
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expicitly. Surface tension forces and viscous forces are included in addition to the

Lagrangian convection.

Conversion of the Triangular Langrangian Code SPLISH to Other Computers

In order to begin the work on this project, we had to move the code SPLISH
originally, written for the TI-ASC, first to a VAX and then to the CRAY computer.
In addition to converting the code, we had to develop different graphics packages for
the new computers. This was an extensive effort. Along the way, many of the original
calculations done under NASA support were redone and checked. In particular, the
droplet oscillation test calculations and one of the calculations of a flow past a droplet
were performed. These calculations are reported in detail in Appendix B, which is a
copy of the paper to be published in 1988 in the Journal of Computational Physics,
and to a lesser extent in Appendix A, which is paper number AIAA-87-0539 from the
ATAA Aerospace Sciences meeting of January, 1987.

Detailed Quantitative Tests of the Surface Tension Algorithm

Developing an accurrate algorithm to model the effects of interfacial surface tension
forces was much more difficult than we expected. We believe that this had never
been satisfactorily addressed in the literature. We tested many different approaches,
including the one we finally used, as documented in Appendix B. At first we used an
n = 2 normal mode droplet oscillation as a test of the accuracy of the surface tension
algorithm. The algorithm we finally used was accurate enough to allow us to compute
a number of periods of oscillation of the droplet. However, the convergence properties
of the algorithm were tested by comparing theoretical and computational calculations
of the properties of internal capillary waves. The result was that the surface tension
algorithm is first order in the mesh size, although the convection algorithm is second

order.
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There is one other result implied by our tests of the surface tension algorithm.
The algorithm works well when the surfaces are not too highly distorted. For highly
distorted surfaces the time and length scales associated with the surface tension phe-
nomenon are much smaller than the convective time and length scales. For droplet
breakup the physics of interest happens on the convective scales. For distorted surfaces
many more points and time steps are needed to compute the motion due to the surface
tension forces accurately, than are needed to compute the convective motion accurately.

The details of this work can be found in Appendix A. These results have been
presented at the American Physical Society Meeting of the Division of Fluid Dynam-
ics, November, 1985, and at the International Symposium on Computational Fluid

Dynamics, Tokyo, in August, 1985.
Calculations of Droplet Distortion and Breakup in Shear Flows

Calculations of silicon oil droplets were compared to the analytic and experimental
work of Mason and co-workers. In these calculations, a drop of density 0.98 g/cc and
diameter 1 mm was placed in an initial shear flow prescribed by v, = G(y — yq), for
points outside the droplet and v, = 0 for points inside the droplet. The parameter y4
is is the y-coordinate of the center of the droplet and G gives the magnitude of the
shear. The y-coordinate of the velocity is initially zero everywhere.

Figure 1 shows the time evolution of one such calculation in which the viscosity
and small surface tension coefficients were small. The experimental results for this case
showed that the droplet stretches in the direction of the flow and small droplets break
from the tips. This is similar to the calculated results shown in Figure 1. The small
droplets shed in the calculation were larger than those shed in the experiments. The
discrepancy is due to the resolution of the numerical calculation, in which we have only
a few triangles available to represent the shed droplets. More resolved calculations.

which we are currently doing, should provide a more solid basis for comparison with

the experimants.
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New and unique calculations of the breakup of a dense fuel droplet in a hot air shear

flow were also performed. Here the stretching of the drop in the direction of the shear
is much less pronounced due to the large density of the drop relative to the background
air. Better resolution has allowed us to see smaller droplets being shed. Currently, very
resolved calculations are being performed. The results of these calculations have been
reported at the 1986 SIAM National Meeting, the American Physical Society Meeting of
the Division of Fluid Dynamics, November, 1986, and the Aerospace Sciences meeting
of the American Institute of Aeronautics and Astronautics, January, 1987. A detailed

discussion of one of these calculations can be found in Appendix A.

Calculations of Droplet-Droplet Collisions

A preliminary calculation of a droplet-droplet collision was performed. This prob-
lem consists of a stationary target droplet and a moving projectile droplet. In the
calculation, the two kerosene droplets were placed in a background fluid of hot air.
The target droplet is initially at rest, while the background fluid and the projectile
droplet on the left were initialized with a potential flow of 1 m/s about the target
droplet. Figure 2 shows the initial phases of this calculation. As the projectile nears
the target, both droplets deform and present nearly flat faces to each other. The lower
parts of the droplets begin to merge first. This merger is accomplished numerically by
the deletion of small triangles of background fluid between the two droplet interfaces.
Since the new interface now has a drastic change in curvature, the surface tension forces
try to expel the background fluid upwardly from between the two main sections of the
kerosene mass. This process produced large numerically generated fluctuations in the
pressures in that region.

Analyzing why this happened provides important information about problems in
the basic algorithm and potential solutions of these problems. First, there are potential
errors in the procedure used to delete triangles near interfaces. These would result in

a phase lag in the pressures at newly created interfaces. A second possibility has its
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origin in the values of the triangle velocities after vertex deletion. The triangle velocities )
determine the rate of expansion or contraction of the volumes about each vertex. The ’ !
. ’ . . . R
pressures react to prevent this change. When a triangle is deleted, the velocities of et
the neighboring triangles must be altered to maintain conservation of momentum and .‘:
;L
circulation. If these velocities are changed in such a way as to produce a huge volume ‘
expansion, we would obtain the symptoms we observe. .\__-':
N
These possibilites are being evaluated, several proposed fixes are being tested, and :':
; ; a7
the calculation will proceed once we have an answer to the problem. )
Addition of Boundary Conditions o
]
. : !
The experiments of Mason and coworkers of droplet shears were performed pri- ®
N
marily with highly viscous silicon oils with the shear flow maintained by the motion 3
of the containment device. Since the visous terms are sinks for energy in the SPLISH %_
algorithm, highly viscous flows damp very quickly to no flow at all. Therefore boundary ).
B,
conditions which simulate the motion of the experimental container have been added A
» . . ..
‘J to the SPLISH algorithm in order to compare the code results to the experiments. 2
To implement this boundary condition a layer of triangles is placed just outside the :;:-
W
n
. . . . . \
computational region on the moving boundary. These triangles have a density equal : ]
to that just inside the moving boundary and are given a prescribed velocity parallel :
to the boundary. Through the viscous terms in the momentum equation. this kinetic e
]
energy is then transferred to the background fluid. To model the experiments, we now :-:
‘_.
o
set the initial flow to zero everywhere except on the exterior boundary triangles. The o
shear flow experiments used impulsive starts, which corresponds to giving the bound- »
ary layer of triangles a constant velocity initially. and ramp starts, which corresponds -
to giving the boundary layer of triangles a linear time dependent velocity up to the
desired boundary velocity. _
‘{ We are also implementing inflow-outflow boundary conditions. There are problems !
~ -
: with doing this. some particular to our formulation. and others because it is simply a ::
| ~
\ ,\- :
>
- -
' b
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very difficult problem (see. for example. Oran and Boris, 1987). One problem partic-
ular to our formulation is geometric and associated with the addition and deletion of
mesh points at the boundaries. Another is associated with conservation of circulation
and vertex cell area because of the incomplete vertex cells for those vertices on the
boundaries. A generic problem is the physical boundary conditions themselves which
determines how variables just inside the boundary, as well as the variables at newly
created vertices. are time advanced. The problem is made more difficult by the irreg-
ular mesh, since there is essentially no literature on inflow-outflow for incompressible
flows differenced over a general connectivity mesh. Research on boundary conditions
in computational fluid dynamics is an important ongoing area of numerical research.
The geometrical aspects of inflow-outflow boundary conditions we are now using
have been tested and work well. The algorithm deletes those triangles with no vertex
within the computational region and adds triangles at the inflow boundary whenever
any boundary vertex is completely within the computational region. The next step is
both easier and more difficult: placing more physically correct values of the physical
variables on the new triangles and vertices. At the inflow boundary, placing a prescribed
value of velocity on a bordering triangle may not produce a vanishing divergence on a
nearby interior vertex. This means that the inflow triangle velocities need to be rotated
slightly to produce the appropriate incompressible flow. On the outflow boundary, the
physical variables need to be updated in a manner that will not produce numerically
reflected waves off that boundary. The form of the physical outflow boundary conditions
that would be best to use in our case are the Orlansky outflow condition as formulated
by Chan in his article Finite Difference Simulation of the Planar Motion of a Ship. The

positive aspect of his approach is that is upwind so there are no reflected waves and

hence we do not need to introduce artificial damping.
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Extensions of the SPLISH Algorithm to Three Dimensions

Extensions of the Lagrangian algorithm on triangular grids to a Lagrangian algo-

rithm on tetrahedral grids has always been a major goal of the work. However, as we

- o

progressed into the problem, we realized what a major effort in algorithm development
is required. Our initial plans were that we would have additional funding from other
sources that we use for algorithm development, which. and in the last year of this pro-
posal, would allow us to calculate the properties of three-dimensional droplets instead

of two-dimensional cylinders.

-
-

The major algorithmic problem with Lagrangian tetrahedra involve the reconnec-

-

e

tions. In two-dimensions, the test for reconnection of a side is merely the comparisons

of two sets of opposing angles in the quadrilateral formed by the triangles on either

»

side, and the reconnection is merely the swap of the diagonals of the quadrilateral. Re-

connection in two dimensions is local to the side in question. In three dimensions, there

iy 25 B 0

is no equivalent diagonal swap. Instead, one must consider several tetrahedra and faces
simulateously, in order to get the optimum grid connectivity. Currently, Dr. Martin
iy Fritts of SAIC has been working on this problem in collaboration with and with funding
from Lawrence Livermore National Laboratories and Los Alamos National Laborato-
ries. However, we at NRL are still somewhat skeptical about being able to apply the
three-dimensional SPLISH analog in an efficient way in the near future.

q Therefore we have taken two other approaches. The first still involves triangles and
tetrahedra: we have successfully developed a finite-element version of the high-order
monotone scheme Flux-Corrected Transport, which uses triangles instead of quadri-
laterals as the basic elements. This is basically an Eulerian method, although a new
arbitrary Lagrangian-Eulerian (ALE) now exists. This work is being carried out at

NRL by Dr. Rainald Léhner under the sponsorship of both DARPA and NASA. These

-

methods now work well and are incorporated in production codes. Combined with a

front-tracking algorithm, this approach could now be used to calcualte droplet dynam-

ics in three dimensions.
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The second numerical approach is still in the conceptual stage. This involves using
the Monotonic Lagrangian Grid representation, developed by Jay Boris at NRL, as a
basis for Lagrangian fluid dynamics. This is an approach we hope to evaluate in the

next couple of years.
Continued Efforts to Make the Code More User-Friendly

Our objective here is to produce a computer code which is more flexible in the
problems it can handle as well as more portable. The program SPLISH has the potential
to solve a large class of problems. However, because of the developmental nature of
the work, the code became a patchwork of additions and fixes. In order to apply
the algorithm with some facility to a variety of problems, some efforts in structured
programming was required. The code itself must be suitably structured so that the
modifications can be made in a straightforward manner. Approximately 80% of this
task is complete. The only major items remaining to be upgraded are the vertex

deletion algorithms for small triangles. This will be complete in F'Y’88.

Discussion

During the contract period, major advances have been made in this program both
in numerical technology and in the numerical solution of problems so difficult that
they have not been attempted before. The physical problems are the droplet breakup
in shear flows and droplet-droplet collisions. The numerical problems involve accurate
formulations of surface tension, boundary conditions, and grid restructuring algorithms
on the Lagrangian triangular grid. This coming year. in FY88, the results of the
droplets in shear flows will be written up and submsitted to the Journal of Fluid
Mechanics. The calculations of droplet-droplet collisions will be continued until the
numerical questions are answered and a case is run.

While the calculations of droplet-droplet collisions has only just begun. the

prospects for significant research results is great. The recent experimental results C.K.
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Y - Law from the University of California, Davis and from Nassar Ashgriz from the State
" University of New York at Buffalo will allow us some benchmark examples for further
]

:E:. code verification before poceeding to cases for which there are no experimental results.
L
::E We have already started talking with Professor Law and we are planning a case to
L

simulate.

by}
oy The code reorganization start=d under the sponsorship of AFOSR will have the
"’f most lasting benefit. With the capability of easy modification of a computationally
R complex algorithm, the number of problems attacked by this approach could multiply.
A One such problem is the behavior of a reacting liquid-gas interface. The computational
™
:':" aspects of this problem is suited to the SPLISH algorithm. Algorithms for the con-
‘,:Ec: densation of the gas (or equivalently the evaporation of the liquid) would have to be
WY

added. This is a problem of current interest to the Navy in connection with liquid-metal

S combustion.
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"3 Elaine Oran. Dr. Martin Fritts, who currently works for Science Applications, partic-
" ipated in the program as a consultant during fiscal year 1985. In addition, Dr. J.P.
- Boris and Dr. Rainald Léhner regularly consulted on this work.
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‘ PRESENTATIONS AND PUBLICATIONS
.
’
" Simulations of Two-Dimensional Fuel Droplet Flows, M.J. Fritts. D.E. Fyfe, and E.S.
s Oran. Prog. Astro. Aero. 95. 540-553. Dynamics of Flames and Reactive Systems.
:_ edited by J.R. Bowen. N. Manson. A.Ix. Oppenheim. and R.[. Soloukhin. AIAA.
fvl

1984.

Application of Two-Dimensional Techniques to Combustion, invited presentation at

Heidelberg University, Heidelberg, West Germany, 1984.
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@‘ Numerical Simulations of Fuel Droplet Flows using a Lagrangian Triangular Mesh,
M.J. Fritts, D.E. Oran, and E.S. Oran, Ninth International Conference on Numer-
ical Methods in Fluid Dynamics pp. 219-224, Springer-Verlag, New York, 1985.

Multidimensional Simulation of Flames and Detonations, E.S. Oran, invited presenta-
tion at the 10th International Colloquium on Dynamics of Explosions and Reactive
Systems, Berkeley, CA. August, 1985.
K Droplet Flows with Surface Tension, D. Fyfe, E. Oran and M. Fritts, the American

Physical Society, Meeting of the Division of Fluid Dynamics, November, 1985.

) Droplet Deformation and Breakup in Shear Flows, D.E. Fyfe, E.S. Oran and M .J. Fritts,
SIAM 1986 National Meeting, July, 1986.

Numerical Simulation of Reactive Flows, invited presentation at NASA-Lewis Research
Laboratory, Cleveland, OH, 1986.
Combustion Computation, Wright Aeronautical Laboratories, invited presentation at
Wright-Patterson AFB, OH, 1986.
& Numerical Simulation of Droplets in Shear Flows, D.E. Fyfe, and E.S. Oran, American
Physical Society Meeting of the Division of Fluid Dynamics, November, 1986.
Numerical Simulation of Droplet Oscillations, Breakup, and Distortion, D. E. Fyfe,
E. S. Oran and M. J. Fritts, AIAA 25th Aerospace Meeting, January, 1987, AIAA
Paper No. 87-0539.

Droplet Deformation and Breakup in Shear Flows, D.E. Fyfe, E.S. Oran and M.J. Fritts,
SIAM Meeting on Numerical Combustion, March, 1987.

Numerical Simulation of Reactive Flows. invited presentation the 25th AIAA Aerospace
Sciences Meeting, Reno, 1987.

Some Challenges in the Numerical Simulation of Laminar and Turbulent Flames. in-

vited presentation at Princeton University, 1987.
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The book Numerical Simulation of Reactive Flow by E.S. Oran and J.P. Boris, Else-
vier, 1987. Large portions of this were was based on work done in and material
developed during the course of this project.

Surface Tension and Viscosity with Lagrangian Hydrodynamics on a Triangular Mesh,

D.E. Fyfe, M.J. Fritts and E.S. Oran. to appear in J. Comp. Phys., 1988.

SCIENTIFIC INTERACTIONS

During the research period, we worked with Dr. Ann Karagozian from University of
California, Los Angeles, to modify her theoretical methods to describe the break up
of droplets due to shear flows around the droplet. The theoretical model includes
surface tension and viscosity and comes up with a droplet break up criterion.

We have been talking to Dr. Jack Hansman from MIT, who has visualizations of the
breakup of water droplets in a shear flow. These show that the droplet clearly loses
its spherical shape before it goes unstable and breaks up. His results are excellent
for comparing with our calculations.

We have begun to interact with Dr. Nassar Ashgriz from the State University of New
York at Buffalo. He has excellent experiments which we can model.

We have been talking extensively to Professor C.Ix. Law, from the University of Califor-
nia, Davis, about simulating some of the conditions of his droplet-droplet collision
experiments.

We have been consulting with Dr. Josette Belan from the Jet Propulsion Laboratory
about a range of parameters over which it would be of use to do a parametric
study of droplet breakup.

During fiscal year 1985, we started a dialogue with Dr. Murial Ishakawa. who is a
fluid theorist for one of the NASA shuttle flights. The experiments carried out
were by Dr. Taylor Wang, of JPL. who was interested in droplet oscillations and
oscillations of droplets within droplets. Our model was ideal for doing calculations

of his experiments, but due to lack of personnel and funding, no calculations of

13




gﬁ? their experiments were ever completed. The net results was that we now have
some algorithms for droplet rotation and droplets within droplets, but they have
not been applied to any problem.
During the research effort, Gopal Patnaik star:ed working with our group at NRL. He
did his dissertation with Dr. William Sirignano, now at University of California.
Irvine. Dr. Patnaik developed and did the calculations for the droplet model and

has consulted on our droplet program.
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NUMERICAL SIMULATION OF DROPLET OSCILLATIONS, BREAKUP, AND DISTORTION

D.E. Fvfe. E.S. Oran. and M.J. Fritts
Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory
Washington, D.C. 20373

Abstract

Numerical algorithms for surface tension and viscos-
ity are presented in the context of a Lagrangian treatment
of incompressible hydrodynamics with a dynamically re-
structuring grid. A test problem consisting of an oscillat-
ing droplet is described. Calculations of droplet distortion
and breakup in an initially constant flow and in an initial
external shear flow are presented.

Introduction

In principle, a Lagrangian formulation of the hydro-
dynamics equations is particularly attractive for numerical
calculations. Each discretized fluid element is tracked as
it evolves through the interaction with its changing envi-
ronment and with external forces. The local interactions
can be represented without nonphysical numerical diffu-
sion. Conservation laws are simple to express since there
are no fluxes out of the fluid element boundaries. The
paths of the fluid elements are themselves a flow visual-
ization. It thus appears to be the natural approach to
transient hydrodynamics with free surfaces, interfaces, or
sharp boundaries.

In practice, the use of Lagrangian methods in nu-
merical simulations has generally been restricted to “well-
behaved” flows. Shear, fluid separation, or even large am-
plitude motion produce severe grid distortion. These dis-
tortions arise because grid points can move far enough that
their near-neighbors change in the course of a calculation.
When differential operators are approximated over a mesh
which is distorting, the approximations may become inac-
curate. Attempting to regain accuracy through regridding
and interpolating physical quantities onto the new grid in-
troduces numerical diffusion into the calculation.

We first describe the numerical technique for La-
grangian calculations using a restructuring triangular mesh
(1] for incompressible, two-dimensional Cartesian Flows.
The major advance of this approach is that the grid auto-
matically adapts and refines itself to maintain accuracy for
discretized operators in a manner that is nondiffusive. The
algorithms have been implemented in the code SPLISH,
which has been applied to calculations of nonlinear waves
[2. 3]. flows over obstacles {4], Kelvin-Helmholtz instabili-
ties (5], Rayleigh- Taylor instabilities [6], Couette flows and
Taylor vortex flows [7]. We then describe the new surface
tension algorithms, and describe applications of the code
to calculations of droplet oscillations and distortions due
to the presence of background flows.
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ents of Lagrapgian Tri 1 rids

Consider a two-dimensional space which is divided
into triangular cells. A section of this mesh shown in
Figure 1, which shows an interface Letween fluid type |
and fluid type II. In Figure la, a particular triangle ) is
highlighted by heavy lines and the various components of
the triangle are labeled. Three vertices, V1, V3, and V5.
are connected consecutively by sides Sy, S;, and S;. The
direction of labeling around each triangle is counterclock-
wise and the z axis is directed out of the page. Since the
mesh can be irregularly connected, an arbitrary number
of triangles can meet at each vertex. We can define a
cell surrounding a vertex, as shown in Figure 1b, by the
shaded region surrounding V3. The borders of such vertex-
centered cells are determined by constructing line segments
joining the centroid of each triangle with the midpoints of
the two triangle sides connected to the vertex, for all tri-
angles surrounding that vertex. This definition of a vertex
cell equally apportions the area of a triangle to each of its
three vertices and provides a simple, efficient way to evalue
the finite difference operators.

Figure 1. A section of a triangular grid showing a)
a material interface, b) a vertex-cell.
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The approach we describe is a conservative integral,
control volume approach on a triangular grid that uses an
integral formulation to derive the difference algorithms.
We use the expressions for the integral of the gradient of a
scalar funtion, f, and the divergence and curl of a vector
field, v. in two Cartesion dimensions,

/VfdA:ff dlx 3
A c
/V-vd/l:fv'(dlxé)
A c
/vadA:fv-dl z,
A c

where A is the region enclosed by the curve C and dl is
the vector arc length around C in the counterclockwise
direction.

A triangle-centered quantity is assumed to be piece-
wise constant over the triangles with discontinuities occur-
ring at the triangle sides, and a vertex-centered quantity
is assumed to be piecewise linear over the triangles. If we
want to form a triangle-centered derivative, we use the tri-
angle as the area A and the sides of the triangle for the
curve C in Eqgs. (1) - (3). If we want to form a vertex-
centered derivative, we use the vertex-centered cell as the
area A. We approximate the area integral on the left side
of Eq. (1) - (3) by the area of the vertex-centered cell times
the value of the derivative at the vertex. We approximate
the line integral using the value on each triangle and the
appropriate vector length through the triangle. This ap-
proach is described in more detail in Fyfe et al. (8].

The basic equations for inviscid incompressible hydro-
dynamics are

dp _
=0
V-v=0,
dv
Pat

In two dimensions the fluid density p, pressure p, and ve-
locity v are assumed to vary with z, y, and t. The term f,
represents external forces applied to the fluid, for example.
forces due to gravity.

+Vp=H,.

In this formulation. it is important to consider which
of the physical variables, p, v, and p, should be defined
as vertex-centered quantities and which should be de-
fined as triangle-centered quantities. Choosing these cor-
rectly ensure the correct conservation properties. We have
found that prescribing velocities as triangle-centered quan-
tities makes the formulation of conservation of circulation
straightforward. Prescribing the densities on triangles and
pressures at vertices allows conservation of vertex cell ar-
eas.

The numerical integration procedure for velocities
uses a split-step algorithm. The velocities are advanced
a half timestep, the grid is advanced a full timestep, and

then the velocities are advanced forward the other half
timestep:

s(vy +v]7),
1/2

1/2
= R({x}). {x]}) v},
_gl/z_ ot . 8t
v," - ij(Vp)} + 2p}f,.

X7 + btv

14)

The vertex velocity v, in Eq. (11) is obtained from the
area-weighted v, determined in the previous iteration.

The transformation R results from the requirement of
conservation of circulation. Equation (13), which produces
conservation of circulation over vertex cell volumes. is a
consequence of this approach. It reflects numerically the
fact that the triangle velocities must be altered as the grid
rotates and stretches. The transformation R is derived
by considering the circulation about each vertex. Con-
servation of vorticity then takes the form of the operator
R which preserves the value of the circulation about each
vertex as the grid changes.

The pressures {p?} in Eq. (14) are derived from
the condition that the new velocities {v}} should be
divergence-free at the new timestep, satisfving Eq. (3).
The pressure Poisson equation is derived from Eq. (14)
by setting (V- v}') = 0 to obtain a pressure p;', such that

5t n - 1/2 &t .-
(V'ZTJ(VP),), =(V.v, )n+(V'2—P—]fe). 113)

Both terms in Eq. (15) are straightforward to evaluate.
since the divergence is taken over triangle-centered quan-
tities. Two features of the Poisson equation, Eq. (15). are
noteworthy. First, it is derived from VZp = V - Vo, as
in the continuum case. Second. the left-hand-side results
in the more familiar second-order accurate templates for
the Laplacians (such as the five-point formula) derived for
homogeneous fluids and regular mesh geometries.

Viscosity modifies Eq. (6). so that now

dv

av = 2y
P +Vp=f, +uVv

(16)
Discretization of the additional term in the momentum
equation follows the same approach as the discretization of
the other terms. Since the velocity is a triangle-centered
quantity, we need a discrete vertex-centered gradient oper-
ator and a discrete triangle-centered divergence operator.
The finite difference equations. Eqs. (10) and (14}, can be
modified to account for the additional term in the momen-
tum equation by
ﬁf: + &Lé_t

2p, 2p,
ot
+ —f, +
2p,
These equations are implicit in the velocities. just as the

original Eqs. (10) - (14) are. As in the inviscid case. we
solve by iteration.
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In Lagrangian calculations, the grid may distort to the
point where grid restructuring is necessary. The deriva-
tions of the reconnection and vertex addition and deletion
algorithms are done through the control volume approach
and the use of triangle velocities. For all the algorithms
used. the divergence and curl taken about each vertex are
both identically conserved for grid reconnections and ver-
tex addition.

The accuracy of a general triangular mesh is dimin-
ished by large obtuse angles within triangles. With recon-
nections, accuracy can be recovered by ensuring that large
obtuse angles are preferentially eliminated. Of the many
ways of formulating a reconnection algorithm. we have cho-
sen one based on requirements for solving the pressure
Poisson equation. Since the equation is solved by itera-
tion, we want the iteration to converge as rapidly as pos-
sible. Mathematically, convergence is assured if the finite
difference equation is diagonally dominant. This require-
ment translates to a relation between two of the angles of
each triangle. The reconnection algorithm preferentially
eliminates large angles in triangles, since the diagonal is
chosen which divides the largest opposing angles. Inter-
face sides are never allowed to reconnect. In such cases
vertex addition algorithms are needed.

Vertex addition algorithms are also needed where the
flow naturally depletes vertices. For vertex addition, satis-
faction of conservation integrals is particularly simple. The
vertex added at the centroid of a triangle subdivides that
triangle into three smaller triangles. A vertex added to the
midpoint of a side subdivides the two adjacent triangles
into four smaller triangles. If the new triangle velocities
are all the same as the velocity of the subdivided triangles,
all conservation laws are satisfied. Since the reconnection
algorithm is also conservative, subsequent reconnections to
other vertices ensure that the only effect of the addition is
an increase in resolution.

The case is not as obvious for vertex deletion. Recon-
nections can be used to surround any interior vertex within
a triangle. The vertex is then removed and the new larger
triangle given a velocity which is the area-weighted sum of
the old velocities, redistributes circulation in accordance
with area coordinates.

Surface Tension

The surface tension at an interface between two ma-
terials depends on the curvature of the interface. In the
conventional numerical representation of surface tension,
it is cast into a finite-difference form by fitting vertices on
the material interface to some parametric function. This
function is then used to find an estimate of local curva-
ture. Once the curvature is known, a surface tension force
is evaluated and used to accelerate interface vertices.

This scheme fails in SPLISH for two reasons. First.
the interface vertices are accelerated directly by surface
tension forces evaluated on the vertices. Since velocities
are centered on triangles in SPLISH. the velocity field sees
the effect of the acceleration a half-timestep later. unless
a secondary calculation is made. As a result, the pres-
sure calculated within the droplet is inconsistent with that

found from the surface tension formula. Second. since
the pressure gradient forces and surface tension forces are
not calculated in the same manner, numerical errors result
which grow with each timestep.

Both of these problems are eliminated by a different
formulation of surface tension. in which a surface tension
potential is used to generate the forces. The surface tension
force is formulated as a gradient of a potential present only
at the surfaces. With this method. the pressure gradient
forces are calculated in the same manner and on the same
grid as the forces derived from the surface tension poten-
tial. Therefore both the surface tension potential and the
pressure are dynamically similar, and the physical pressure
drop across the interface must exactly cance] the surface
tension forces. Preliminary aspects of this work were de-
scribed by Fritts et al. [8.9).

The finite-difference algorithms for surface tension are
straightforward. The surface tension forces are included
through Laplace's formula for the pressure jump across an
interface {11},

P:-PO=U/R~ (16)

where p; is the pressure just inside the droplet at the inter-
face, p, is the pressure just outside the droplet at the inter-
face, ¢ is the surface tension coefficient associated with the
two media which define the interface, and R is the radius
of curvature in the two-dimensional plane. The radius of
curvature is positive at points on the interface where the
droplet surface is convex (a circle is convex everywhere)
and negative when the surface is concave. These pressure
jumps are included in the Poisson equation for the pres-
sure. The average pressure. (p, +P,)/2. is computed at the
interface vertices. From the average pressure and the pres-
sure jump, we can compute a pressure gradient centered
on triangles, both inside and outside the surface. This
pressure gradient is used in the momentum equation.

The radius of curvature is computed from a paramet-
ric cubic spline interpolant to the interface vertices. Past
calculations of droplets oscillating due to surface tension
forces [12,13] also use cubic spline interpolation. However,
they divided the surface into at least four segments (the
top, bottom. right and left sides of the droplet) to pro-
duce an interpolant on each segment. Each interpolant
was matched at the joints to produce an overall curve.
The parametric interpolant used here does not require this
special matching. We generate the twice differentiable pe-
riodic spline interpolants. r(s) = (z(s). y(s)) as prescribed
by deBoor (14].

The spline fit is also used for regridding. ‘When the
regridding algorithm calls for the bisection of a triangle
side which borders the two media. a new vertex is added
on the spline interpolant between the vertices. This is
done rather than bisecting the straight-line segment. since
a straight-line bisection introduces spurious interface ns-
cillations. Bisecting the spline maintains a better overall
shape for the interface.
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In order to test the algorithm for surface tension in
SPLISH. we calculated the oscillation of a droplet due to
surface tension. We have extended Rayleigh's linear theory
(15] of small amplitude droplet oscillations to include the
presence of an external fluid,

(n® = n) i (17)
w' = -n)————— 7
(P4 + pe)a®

where . is the frequency. pq is the droplet density, g, is the
density of the external fluid. and the surface of the droplet
is given in polar coordinates by

r = a + ecos(né), (18)
where a is the unperturbed radius of the jet, and n pre-

scribes the mode of oscillation in the plane with amplitude
e.

Figure 2 is a composite of frames from a calculation in
which € = 0.2a = 0.0025. In this calculation there are 17
vertices in each direction along the exterior boundaries. 12
vertices on the droplet interface and a total of 313 vertices
initially in the calculation. The computational domain is
0.1 cm on a side. The left and right boundaries are peri-
odic while the top and bottom boundaries are solid walls.
The timestep is §t = 2.5 x 10~% 5. The figures shows four
and a half oscillations of the droplet. We can see that as
the calculation proceeds. no new vertices have been added.
but in fact some have been subtracted. This was the case
because the initial gridding was adequate to represent the
droplet shape. From these calculations, the period of os-
cillation is rj2 = 1.35 x 1073 s, compared to the theoretical
value of 1.13 x 103 s. Figures 3 shows the initial oscilla-
tion for a more resolved case in which there are 28 vertices
surrounding the droplet.
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Figure 2. A composite of frames from a calculation of an n = 2 normal mode droplet oscil-

lation with 12 vertices around the droplet: p, =1 g/cc, p4 =2 g/cc, o
0.0125 cm. Each frame is 0.1 x 0.1 cm?,

aq =

Figure 3. A composite of frames from a calculation of an n =

= 30 dynes/cm,

-3
6.34 x 107* 1.27 x 10

2 normal

mode droplet

oscillation with 28 vertices around the droplet.
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Incompressible Flow about a Droplet

(KN . .
':,l In thuhs section we present some calculations of forced.
) asymmetric drop oscillations induced by flow around a
L‘.I dro.plet. These calcula.tions include both the effects of vis- Table 1. Conditions for Flow around Droplet Calculation
'.,. » cosity and surface tension. The capability of studying such
W @ flows for viscous droplets in shear flows is the motjvation  density of kerosene 0.82 g/cc

for developing the viscosity and surface tension algorithms. density of air 0.0013 g/cc

The initial conditions we used specified an initially
steady-state potential flow about a periodic series of eylin-
ders. Again, the boundary conditions on the left and ;ight
sides are periodic. and the upper and lower boundary con-
ditions are reflecting walls. Initially, a perfectly ci-rcular

surface tension (STP)
viscosity of kerosene
viscosity of air

air velocity

initial droplet velocity

30 dynes/cm
1.8 centipoise
0.018 centipoise
120 m/s

0.0 m/s

125 microns

e droplet is at rest in a background flow. A physical situa. droplet radius

tion modelled by such an initialization might occur if the .
t

::" flow velocity were ramped up to its final value before any
Lo, significant structure could develop in the flow. and before
b9 i the droplet could pick up any substantial velocity. Basi-
:. y cally, it is a smooth start for the calculation. Previously we
&N had performed calculations which began with an impulsive

start, but found that as a result there was a large amount
o of momentum transferred across the droplet interface early
X in the calculation.
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F Figure 4. Pathlines from a calculation of a flow around a kerosene droplet at flow velocity
of 120 m/s and Re =~ 2000.
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The calculations presented here model the forced fluid
flow due to a fast air stream about an initially stationary
kerosene droplet. The physical parameters. given in Ta-
ble 1, are appropriate for a combustor environment. A
total of 309 vertices were used to initialize the problem.
with 12 vertices at the droplet interface. Figure 4 follows
the evolution of pathlines in the internal and external flow
fields through a series of timesteps. For an air velocity of
120 m/s and a droplet radius of 125 microns. the corre-
sponding Reynolds number is roughly 2000. The pathlines
are defined by the paths of vertices over five timesteps.
By the last frame of Figure 4. the fluid originally to the
left of the droplet has progressed through the mesh and
interacted with the face of the (next) droplet.

The first clear indication of the development of the
recirculation region is seen in the fourth frame of Figure 4.
which shows a pair of counter-rotating vortices. The recir-
culation zone continues to develop throughout the calcu-
lation, although at times the vortex pair is not as evident
due to the deletion and addition of vertices, which inter-
rupts the continuity of the pathlines. By the last frame,
another pair of vortices is forming near the droplet, and
the original pair has been shed.

S Ml

Distortions in the face of the droplet are evident in ar
least the seventh frame. These distortions occur because
the curvature has increased and the streamlines in the ex-
ternal flow are condensed by the approaching wake. The
internal velocities are small compared to the external flow
rates and therefore cannot be distinguished as pathlines.
However. indication of the (small) internal recirculation
may be obtained by comparing internal vertex positions
at various timeteps.

Figure 5 shows the grid at times in the calculation
corresponding to those in Figure 4. During the course of
the calculation, a great deal of vertex addition and deletion
has occured. Vertex addition. however, is most noticeable
in the wake of the droplet and around the droplet interface.
Whereas there were 300 vertices at the beginning of the
calculation. there are 450 at the end.

As seen in Figure 5. the computational grid needs fur-
ther refinement at this time because the perturbations can-
not be resolved by the limits set on minimum triangle size
originally chosen for the calculation. A sign that the cal-
culation is under-resolved is that one of the crests of the
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surface wave is spanned by a single triangle. a situation
which allows no communication of that surface fluid with
the interior of the droplet. In order to continue the simula-
tion. better resolution must be obtained about the droplet
surface. Another algorithm is currently being included to
allow higher resolution near points of large curvature at
material interfaces.

A Droplet in a Shear Flow

An important problem in atomization is how a droplet
breaks up due to shear forces. To investigate this compu-
tationally, we have simulated droplets in a shear flow cen-
tered around the droplet. The initial flow is prescibed by
v; = Gly — ya) for points outside the droplet and v, = 0
for points inside the droplet. The parameter y, is the y-
coordinate of the center of the drop and G gives the mag-
nitude of the shear. The y-component of the velocity is
initially zero everywhere. )

Results of a such a shear on a kerosene droplet in hot
air are shown in the three panels in Figures 6. for a case in
which G = 5 x 103/sec. We used 0.013g/cc as the density
for hot air. The remaining physical parameters are the
same as those in Table 1. Initially the droplet was round.
but in Figure 6a it has already become elongated in the
directions of the shear. At a later time, in Figure 6b, it
has become even more elongated. Times intermediate to
these two figures show that some very small droplets have
already been pulled off of the large drop, but their size was
so small that they were deleted from the calculations. Fig-
ure 6¢ shows a still later time, when small droplets have
been are moving off of both sides. The small droplets some-
times seem to move counter to the flow of the main shear
layer. This is because a recirculation zone forms on the
upper left and the lower right of the large droplet.

Summarv

This paper presented the current algorithms included
in the code SPLISH. a two-dimensional Cartesian La-
grangian treatment of incompressible flows with a dynam-
ically restructuring grid. Algorithms for modelling viscos-
ity and surface tension have been tested on a number of
problems.

Detailed benchmarks of the surface tension algorithm
were presented using a Rayleigh oscillating droplet for a
test problem. This algorithm. based on spline fits to de-
termine curvature, was good enough to allow the droplet
to oscillate many times and still maintain a constant pe-
riod. However, the amplitude calculated for the original
excited mode decayed into higher modes. We believe this
is due to a resonance coupling between the modes n = 2
and n = 3. A similar resonance coupling exists in three
dimensions{16].

We are currently calculating droplet distortion and
breakup due to differential external flows. shear flows. and
droplet-droplet collisions. Some of the results of these cal-
culations were shown in Figures 4. 5. and 6. and will be
discussed more thoroughly in the presentation.
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Figure 6. Four frames from the calculation of a droplet in a shear flow.
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Abstract

Numerical algorithms for surface tension and viscosity are presented in the con-
text of a Lagrangian treatment of incompressible hydrodynamics with a dynamically
restructuring grid. New algorithms are given which update previous Lagrangian ap-
proaches in the code SPLISH. Test problems involving internal gravity and capillary
waves, an oscillating droplet and a viscous shear layer are described. An example is
given of a flow calculated in and around a viscous droplet with surface tension in a

shear flow.
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I. Introduction

In principle, a Lagrangian formulation of the hydrodynamics equations is partic-
ularly attractive for numerical calculations. Each discretized fluid element is tracked
as it evolves through the interaction with its changing environment and with external
forces. The local interactions can be represented without nonphysical numerical diffu-
sion. Conservation laws are simple to express since there are no fluxes out of the fluid
element boundaries. The paths of the fluid elements are themselves a flow visualiza-
tion. It thus appears to be the natural approach to transient hydrodynamics with free
surfaces, interfaces. or sharp boundaries.

In practice, the use of Lagrangian methods in numerical simulations has generally
been restricted to “well-behaved” flows. Shear, fluid separation, or even large amplitude
motion produce severe grid distortion. These distortions arise because grid points can
move far enough that their near-neighbors change in the course of a calculation. When
differential operators are approximated over a mesh which is distorting, the approx-
imations may become inaccurate. Attempting to regain accuracy through regridding
and interpolating physical quantities onto the new grid introduces numerical diffusion
into the calculation.

This paper is a summary and update of the latest additions and modifications
to a numerical technique for indefinitely extending Lagrangian calculations by using
a restructuring triangular mesh, first introduced by Fritts and Boris [1]. The major
advance of this approach is that the grid automatically adapts and refines itself to main-
tain accuracy for discretized operators in a manner that is nondiffusive. The algorithms
have been implemented in the code SPLISH. which has been applied to caleunlations
of nonlinear waves [2, 3], flows over obstacles [4]. Kelvin-Helmholtz instabilities [5].
Rayleigh-Taylor instabilities [6]. Couette flows and Taylor vortex flows [7].

Work on Lagrangian techniques for grids which do not have fixed connectivity
has recently had a renaissance. Early attempts included the PANACEA code (8] and

the PAF (Particle-And-Force) algorithm [9. 10]. In the 1970°<. these concepts were
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improved and extended for triangular grids: triangle reconnection by Crowley [11]:

MHD algorithms over a triangular mesh {12]; and adaptive triangular meshes in the

:,: work mentioned in the previous paragraph on SPLISH. During the same period work
E:: began which used Voronoi meshes for hydrodynamics calculations [13].

B Recently this use of general connectivity grids has rapidly expanded. as summa-
""‘ rized in the First International Conference on Free-Lagrange Methods [14]. Applica-
;: tions now include finite-difference and finite-element calculations of classic hyvdrody-
'( namic instabilities, tokamak modelling, high temperature plasma physics, heat con-
. duction, wave-structure interactions, impact deformations, and hyvdrodynamics prob-
5&: lems for both compressible and incompressible fluids. Free-Lagrange methods now use

‘ quadrilateral, triangular and mixed meshes in two dimensions, tetrahedral meshes in

: three dimensions, Voronoi meshes in both two and three dimensions, and methods
7 which are mesh-free.

‘ In this paper we present the latest modifications to SPLISH (section II). These
}:t include the most recent version of the rotation operator, which conserves circulation,
’ gﬁ_‘ and the residual algorithm, which ensures conservation of the area of cells. We also
:- - introduce new algorithms for viscosity and surface tension. Including viscosity proved
to be straightforward (section II). However, the search for a good enough algorithm
- for surface tension (section II1) was more challenging and difficult. The basic problem
:;' is defining a proper curvature from a finite number of points. Because of this. the
.»3 numerical approximation of surface tension forces between two fluids is conceptually
:f's quite different from approximations of convection and viscous forces. The final formu-
: : lation chosen. a series of test problems, and a list of approaches that failed are detailed
7

, (section [II). Finally, we combine the convective transport. surface tension. and vis-
, '-:: cosity algorithms to perform some preliminary calculations of flows in and around a
:: viscous kerosene droplet. These calculations show vortex shedding behind the droplet.
. distortion of the droplet due to the shear flow, and internal droplet tlows.
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II. Basic Elements of Lagrangian Triangular Grids

This section is a review of the derivation of low order finite-difference approxi-
mations to the equations describing incompressible fluid motion for general triangular
grids. Some of the material was originally presented by Fritts and Boris [1]. and the
interested reader is referred there for more detail. However. new material brings the
previous paper up to date. This includes the lastest version of the rotation operator.
which conserves circulation, the residual algorithm. which ensures conservation of the

area of cells, and the new algorithm for viscosity.

A. The Triangular Grid

Consider a two-dimensional space which is divided into triangular cells. A section
of this mesh shown in Fig. 1. which shows an interface between fluid type I and fluid
type II. In Fig. la, a particular triangle j is highlighted by heavy lines and the various
components of the triangle are labeled. Three vertices. V;, V5, and V3, are connected
consecutively by sides Sy, S2, and S3. The direction of labeling around each triangle
is counterclockwise and the z axis is directed out of the page. Since the mesh can be
irregularly connected, an arbitrary number of triangles can meet at each vertex.

We can define a cell surrounding a vertex, as shown in Fig. 1b, by the shaded
region surrounding V3. The borders of such vertex-centered cells are determined by
constructing line segments joining the centroid of each triangle with the midpoints of
the two triangle sides connected to the vertex, for all triangles surrounding that vertex.
This definition of a vertex cell equally apportions the area of a triangle to each of
its three vertices and provides a simple, efficient way to evalue the finite difference
operators. However, the definition of a vertex cell is arbitrary. Other definitions could
be equally well employved, although they generally require additional calculations to
determine cell intersection points. The integration of cell quantities mayv therefore

involve more arithmetic operations for other definitions.
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B. Finite Differences on a Triangular Grid

Finite-difference approximations for derivatives of functions defined on the trian-
gular grid are derived from the expressions for the integral of the gradient of a scalar

funtion, f, and the divergence and curl of a vector field. v, in two Cartesion dimensions.

/VfdA:ff dl x 3 (2.1)
A C
/v.vdA=fv-(d1xs) (2.2)
A C

/vadA:]{vdl z (2.3)
A c

In each of these expressions, A4 is the region enclosed by the curve C and dl is the
vector arc length around C in the counterclockwise direction. The variable Z is a unit
vector in the direction of the ignorable coordinate. By using these definitions in a
conservative integral approach, the definitions for spatial derivatives described below
can be naturally extended to two-dimensional axisymmetric geometry [7].
Throughout the following discussion a triangle-centered quantity is assumed to be
piecewise constant over the triangles with discontinuities occurring at the triangle sides
and a vertex-centered quantity is assumed to be piecewise linear over the triangles. If
we want to form a triangle-centered derivative, we use the triangle as the area .1 and
the sides of the triangle for the curve C in Eqgs. (2.1)-(2.3). We then approximate
the area integral by the area of the triangle times the value of the derivative on the
triangle, and approximate the line integral using the trapezoidal rule on each side of
the triangle. For example. the gradient of a scalar function f defined at the vertices is

a triangle-centered quantity, (V' f),. given by

1 .
4;(Vf),=32fi (ry—) —r41) Xz (2.1

()

where r, = (r;.y,) is a vector coordinate for vertex / and .4, is the arca of triangle j.

We have also used the notation of Fritts and Boris [1] that 37, ) is interpreted as the
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sum over vertices ¢ of triangle j. In the material presented below. the index i designates
vertex-centered quantities and the index ; designates triangle-centered quantities.

If we want to form a vertex-centered derivative. we use the vertex-centered cell
as the area 4. We approximate the area integral on the left side of Eq. (2.1)-(2.3)
by the area of the vertex-centered cell times the value of the derivative at the vertex.
We approximate the line integral using the value on each triangle and the appropriate
vector length through the triangle. For example. the curl of the vector field v at a

vertex c is approximated by

o
(a1}

AV x v, ZV,+1/q~ ripp— ) 2. (s
|(c)

. _ _1_ . B . , .
where 4. = 3 Zj(c) A; is the vertex-centered cell area, Z}(C) is a sum over the triangles
around the central vertex c, Zi(c) is a sum over the vertices around vertex ¢, and v,4 /2
is the value of the vector field v on the triangle having vertices ¢, ¢, ¢ + 1. Similarly.

the divergence of the vector field v at a vertex is approximated by

AV V) Z[V,H,ox (rig1 — 1)) 3 (2.6)
I(C)

C. The Equations for Incompressible, Inviscid Flow

The basic equations for inviscid incompressible hydrodynamics are

(l_/z = 0. {(2.7)
dt
V.v=0, (2.8)
(lv .
= 2.9
dt +\p=f1,. {2.9)

[n two dimensions the fluid density p. pressure p. and velocity v are assumed to vary

with . y. and t. The term f. represents external forees applied to the flnid. {for example.
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forces due to gravity. Equation (2.8), the condition for incompressibility. removes the
sound waves.

Since we want our finite difference approximation to preserve the conservation
properties for incompressible inviscid fluids, it is important to consider which of the
physical variables, p. v, and p. should be defined as vertex-centered quantities and
which should be defined as triangle-centered quantities. We have found that prescrib-
ing velocities as triangle-centered quantities makes the formulation of conservation of
circulation straightforward. Prescribing the densities on triangles and pressures at
vertices allows conservation of vertex cell areas.

The time integration of velocities uses a second-order implicit split-step algorithm
which is solved by iteration. The vertex positions are advanced using a second-order
midpoint rule. Specifically. the velocities are advanced a half timestep. the grid is
advanced a full timestep. and then the velocities are advanced forward the other half
timestep. The complete algorithm is as follows. First compute the half-timestep trian-
gle velocities using

v1./2 bt bt

=v?— —(Vp)? + —f.. (2.10)
J J 'ij( b 2p;

where the superscript o designates the values at the old time step. We then make an

initial guess for the new triangle velocities

n0 _ _1/2
Vit =,
and iterate
ar 1 ke
vk = S(ve+ v, (2.11)
xMF = x2 4 el (2.12)
~1/2.k nok 1/2 -
v, =R({x7}.{x/"}H v~ (2.13)
Kk _ a1/2k O nk Ot :
v; :vj/ —j)—T(V[))J +;)—;—f,. (2.1
<Py <1,
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where the second superscript indicates the iteration number. The vertex velocity v
in Eq. (2.11) is obtained from a weighted average of the triangle velocities v;"k for
those triangles having ¢ as a vertex,
vl = L) Y] (2.15)
2 Wi
We use wj = 0;p; A;, where 6; is the angle (in radians) of triangle j at vertex i/ divided
by 7. The transformation R in Eq. (2.13) results from the requirement of conservation
of circulation, and is discussed in Section D below.
The pressures {p?‘k} in Eq. (2.14) are derived from the condition that the new
velocities {v;"k} should be divergence-free at the new timestep, satisfving Eq. (2.8).
The pressure Poisson equation is derived from Eq. (2.14) by setting (V - vj-)""‘ =0to

obtain a pressure p?'k, such that

6t n,k ko 1/2k k
V. —(Vp);)." = (V" v "), + (V. —1,); 2.16)

Both terms in Eq. (2.16) are straightforward to evaluate, since the divergence is taken
over triangle-centered quantities. Note also that the discrete gradient operator ¥ ust
also carry time advancement superscripts since it depends on the current grid location.
(See Eq. (2.4).) Two features of the Poisson equation, Eq. (2.16). are noteworthy. First.
it is derived from V2¢ = V- V@, as in the continuum case. Second. the left-hand-side

results in the more familiar second-order accurate templates for the Laplacians (such

as the five-point formula) derived for homogeneous fluids and regular mesh geometries.
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D. Conservation of Circulation ’

>

The approach we have outlined is basically a control volume approach which nses

& an integral formulation to derive the difference algorithms. Equation (2.13). which gy

-
» produces conservation of circulation over vertex cell volumes. is a cousequence of this y

approach. [t reflects numerically the fact that the triangle velocities must be altered

| as the grid rotates and stretches. This process does not prevent the addition or loss of l.
: vorticity due to external forces or changes in density at interfaces. Rather it corrects :.
: any numerical errors that may arise because the grid has moved. Thus it guarantees ;
; conservation of circulation at those vertices where the circulation theorem applies. »
: The transformation R is derived by considering the circulation about each vertex. 5
. Since triangle velocities are constant over the triangle, the circulation taken about =)

the boundary of the vertex cell can be calculated from Eq. (2.5). The conservation

of vorticity then takes the fori. of the operator R which preserves the value of the

circulation about each vertex as the grid changes.

LR T N

) Conservation of circulation requires that at each timestep. and for each vertex. c.

(2™
—
-1

~1/2.k n.k nky _ 1/2 .
V,’+1/g'(ri+l_ri )—Zvi+1/g‘(r?+1 - r7). {
i(c) i(c)

For convenience in notation, we now drop the superscript 1/2 for the velocitices and A
the iteration superscript & appearing in Eq. (2.17). Since there are two components -
of velocity on each triangle, but only one constraint at each vertex. the form of the

h rotator is underdetermined. Fritts and Boris [1] provided the additional constraints by

DR R R

making each term in the circulation integral associated with a given triangle a conserved
quantity, and hence the sum in Eq. (2.17) remains unchanged. This nicans that for
each triangle j.

g n

vic(ei gy —rl)=vi(rj, —r)). 0= 1.2.3. (2.1

LT TR 20 B LN N

Althongh this approach conserves circulation. the following example shows that 1t i~

much too restrictive.
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“u?, Let us also decompose év,;1,2 into a compouent. t,4,,. parallel to the side op-

posite vertex ¢, and a component. n,,.,,. normal to the side opposite vertes ¢ by

-

writing

A

5X(P,+1—-l‘,‘)+t ryyp — o, (-
'1+1/-“.,+1 _[.‘_I'

[V
(&™)
—
—

(SV 9 = 1y -
+1/2 +1/2
! / ! / ‘I‘,‘H —-I‘,‘i

With this notation and using the equation for the area. A;;,,,. of triangle i + 1/2.

I A @ eyt O NS

o
1AV]

244172 = - [(rigy —ra) X (rd —rigq)]. (2.

Eq. (2.20) becomes

b o 4 .
]

24412 (rig1—ri) - (r2 —rigp)
——n11/2 +
friv; — ry [riy1 — ri

e
s

—24i-1p0 i —rio1) - (rioy —r; '
TRl VES Ni_1/2 + (ry = rica) (micy = rd) (
lr; — i

[§)
QW]
o
—

2
|
=3
I
-
~
I
Z
1o

o
"

s s
Wt
-

AN

= (vici2— V.’+1/2) -bre.

Y

] Let N. denote the number of triangles (vertices) about an interior vertex c¢. The N,

1
o L
.

. r
-

v .

equations given by Eq. (2.23) for the 2/V; unknowns {t;1,/2} and {n,4,,2} are linearly

3

'/’ft

dependent. This can be seen by summing the equations. which produces the equation

u'.t'l

for the change in circulation about vertex ¢. The equation for the change in circulation

A

.2y oY

at vertex ¢ is a linear combination of the ¢,4;/2’s. which is equal to zero. Since we want

2,
.

the t;41/2's to be linearly independent. we can set ¢;;;,2 = 0 for all /. We still need

-‘_'1"‘}

L

another equation to determine the normal component for the change in velocities on

the triangles.
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Let us for the moment write that equation as
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Using Eq. (2.23) with ¢,y = 0 for all i, we can sneeessively climinate caclin, 0 for

R}

t= 1., Ne — Lin Eq. (2.24) until we arrive at an equation for n /. Sinee the
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W numbering of the triangles and vertices is arbitrary, this expression is valid for each
triangle i + 1/2 by replacing n 4172 with nipy/2 and vy 4y with v,4 /. The resalt
is that

2 X (rig1 —ry)

¥ Wy

Chg1/2/The1 — Ti] Cha1/2Ther — Ty
[b— E 51 (Vig1/2 = Vigage) - €rel/ E 51
o Argr2 & R PR

(2.23)
Several alternatives are possible for Eq. (2.24). If we conserve divergence about the

vertex c, then

Ciy1/2 = Irigr — ryf,
(2.26)
b=0.
The transformation R prescibed by Eq. (2.23) is time-reversible. hence Eqs. (2.10)-
(2.14) are also reversible. The entire algorithm advances vertex positions and veloci-
ties reversibly while evolving the correct circulation about every interior vertex. This
technique is unique for Lagrangian codes, which usually either ignore conservation of
o

‘7'."7 circulation completely or conserve circulation through an iteration performed simul-

taneously with the pressure iteration. With this method the circulation is conserved

exactly regardless of whether the pressures have iterated to their final values.

E. Viscous Flous

Viscosity modifies Eq. (2.9), so that now

l 5
p%+Vp:fe+uV'v. (.
1

[ O]
B
=1

Discretization of the additional term in the momentum eqnation follows the same ap-

proach as the diseretization of the other terms. Since the velocity is a triangle-centered
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quantity, we need a discrete vertex-centered gradient operator. and a discrete triangle-

centered divergence operator. Emploving the same techniqgues as above we have

1 -
ANV fle =5 Zf.+1/2(1‘|+1 —ri) X 2, (2.28)
- 1(c)
and
1 .
A,(V-v), = 52[\,, X (Fiy1 —ri_)] - 2. (2.29)
(1)

The Laplacian is found by taking the divergence of the gradient.
The finite difference equations. Egs. (2.10) and (2.14), can be modified to account

for the additional term in the momentum equation by

v, T =V —ij_(vp), + —ij fe +» 2, (V=v)]. (2.30)
nk _ =1/2k Ot nk Ot [T e — kynok=1 o ¢
vit=v - —(Vp): -+-—fe AVAMIPI VAL ) - (2.31)

-(Vp); 3, 2, 5

These equations are implicit in the velocities, just as the original Eqs. (2.10)-(2.14)
are. As in the inviscid case, we solve by iteration.
This algorithm was tested by calculating the spreading of a shear layer of initially
zero thickness given by
(v£,0),  for y > yo.

v(z,y,t=0)= ¢ (0,0), for y = yo. (2.3
(—UI,O), for ¥ < Yo.

[ RV
7
S

where y, is the original location of the vortex sheet. The velocity distribution across

this layer evolves as

. ol = yo) o
viz,y,t) =& v; elf{—um)]/g ‘ (2.33)
where v = p/p. The width Ay of the layer grows as
Ay =~ 8(vt)/2. 1231
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For the test calculation the grid was initialized to center a vortex sheet in a grid
16 cells wide with an initial laver width of zero. The two opposing streams had initially
constant velocity profiles. The evolution of the interface between the streams was
governed by the same algorithms as the interior of either fluid. so that no special
interface boundary condition was used. The boundary conditions on the sides of the
computational region were periodic. and the top and bottom had free-slip boundary
conditions.

At the end of the calculation. the laver width agreed to within numerical roundoff
with the theory and the layer extended over the whole mesh. The velocity profile for
each stream coincided with that given by Eq. (2.33) to within round-off error. The
y-components of the velocity remained zero, indicating that the algorithm was working

well for the grid distortions presented by the problem.

F. Conservation of Vertexr Cell Areas

Equations (2.10)~(2.14) are implicit in the triangle velocities {v,}. Because these
equations must be solved iteratively to produce a divergence free velocity ficld.
small residual error may remain. In addition. vertex velocities are derived from the
divergence-free triangle velocities. In practice this means that vertex cell arcas may
not be conserved. Furthermore, as the flow progresses. the triangle sides distort. Yet
at any given time we compute using straight triangle sides. which does not produce the
equivalent cell area about any given vertex. However. since we know what the triangle
area should be, it is possible to at least make a correction to the known error. Our
approach. then, is to perform an ad hoc correction step after all the vertices have been
advanced in time. This correction step moves the vertices in order to conserve vertex
cell area. After this vertex correction step. the rotator is applicd to ensure that the

circulation has not been changed.
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ol To expand or contract a vertex cell area. we must expand or contract the surronnd-
ing triangle areas. Suppose we wish to expand a triangle j with area A, and vertex

coordinates r; by an amount 64,. To do this we will move each vertex r,. an amount

rhew —[‘,:6[‘, :(l) [5)( (rioa _ri+l)]- {2.35)
that is, the vertices of the triangle are moved normally to the opposite side a distance
prescribed by the triangle expansion factor, d,. If d; is positive. the triangle area

increases. Using the vector definition for the area of a triangle. we have

264, = 2A%Y — 24,

new new new new )] .

z[(r..H -r; )X(I‘,-_l — T 5“[(ri+l —I‘;)X([‘,—I‘,_l)]-f

[(rigr —ri) X (bricy — érign)] - 24 [(6rigr — 6ri) X (rop —ragn)] - 2 (2.30)

+ [(6I',+] - 61‘,‘) X (61‘,_1 - 5!‘,‘4.1)] -z

= 32(11 + 6:1,»([3,

2

is the sum of the squares of the sides of the triangle. This quadratic in the

‘; where s

expansion factor. d,. can be solved to yield

_ 2 ot 48 -
S + S '+‘ 16‘116111. (2..37)

124,

dy =

The sign in front of the square root was chosen to ensure d, has the same sign as ¢.4,.
We relate the change in triangle area. é.4,. to the conservation of vertex cell arcas

through

[ 8
e
s

) 1)

where the sum is over the three vertices of the triangle. 4, is the cirrent area about ver-
tex ¢ and .4 is the original area about vertex i. Basically. the change in vertex cell arcas
is apportioned to each contributing triangle according to that triangle’s contribntion

to the vertex cell area.
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Although this residual correction is a small numerical effect. we have found that

~

-

J.'.‘j\ N~ \\‘D)I,“""u‘

it

improves the overall results of a calculation. Because this algorithm expands triangles,

it has potential for modelling other physical processes. In a compressible algorith

involving energy release and fluid flows with transit times which are small compared

m

to

the energy release times. this algorithm could be used to produce the required expausion

of the vertex cells.

G. Grid Restructuring

In Lagrangian calculations the grid may distort to the point where grid restructur-

ing is necessary. The derivation of the reconnection and vertex addition and deletion

algorithms are done through the control volume approach and the use of triangle velo

ities. For all the algorithms used, the area-weighted divergence and curl taken about

each vertex are both identically conserved for grid reconnections and vertex additiol

The accuracy of a general triangular mesh is diminished by large obtuse angl

obtuse angles are preferentially eliminated. There are many ways of formulating

reconnection algorithm. The one we have chosen is based on requirements for solving

the pressure Poisson equation. The pressure Poisson equation is formally equivalent

that obtained by a piece-wise linear Rayleigh-Ritz-Galerkin finite element procedu

on a triangular grid. (See, for example [15].) Since we solve the equation by iteration.

we want the iteration to converge as rapidly as possible. Mathematically, convergen

is assured if the finite difference equation has a maximum principle: that is. all t

off-diagonal terms are negative, the diagonal term is positive and greater than or equal

to the absolute value of the sum of the off-diagonal terms. with strict inequality for
least one equation. (That one equation typically involves bonundary conditions. €

boundary condition prescribes the integrated pressure along the upper boundary.)
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:" .:",,E:- To see how large angles affect the maximum principle. consider the difference
».
. equation for vertex ! of Fig. 3a. The off-diagonal coefficient relating vertex [ to vertex
W .
’u J1is
" 1
" a= —E(cot 6~ + cot61) (2.39)
WY
RW
' where 6% and 6~ are the angles opposite the line from the vertex j to the vertex !
e as shown in Fig. 3a. The other off-diagonal terms are determined in a similar man-
s nerfrom the remaining edges eminating from vertex [. The diagonal coeflicient is the
~2 negative of the sum of the off-diagonal terms. For positive area triangles, % and 6~
W are both between 0" and 180 °. Hence, each term in Eq. (2.39) is negative only when
g
o o .
8 6% + 6~ > 180" since
f;" sin(0% +6_) (2.40)
N "~ 2sinf+sind- '
-'_ The reconnection algorithm ensures that the angles subtended by any given edge
~
o sum to no more than 180 °. If §* + 6~ is greater than 180 °, the grid line is reconnected
~
e as shown in Fig. 3b. The new angles, §'* and ¢'~, must sum to less than 180  since
. N (0% +0~ +60'F +6') is the sum of the interior quadrilateral angles. which must be 360 7.
N
':: By chosing the diagonal which divides the largest opposing angles. the reconnection
o . . . . .
e algorithm preferentially eliminates large angles in triangles.
"
™ Interface sides are never allowed to reconnect. In such cases vertex addition algo-
o rithms are needed. Vertex addition algorithms are also needed where the flow naturally
W
j‘_\ depletes vertices. For vertex addition, satisfaction of conservation integrals is partic-
L]
o nlarly simple. The vertex added at the centroid of a triangle subdivides that triangle
' into three smaller triangles. A vertex added to the midpoint of a side subdivides the
Ta, two adjacent triangles into four smaller triangles. If the new triangle velocities are all
'~ J (=] o -
o : .. . : .
::_' the same as the velocity of the subdivided triangles. all conservation laws are satis-
~
" fied. Since the reconnection algorithm is also conservative. subsequent reconnections
to other vertices ensure that the only effect of the addition is an increase in resolntion.
(l
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;:-..- The case is not as obvious for vertex deletion. Reconnections can be used to .

surround any interior vertex within a triangle. The vertex is then removed and the new

: larger triangle given a velocity which is the area-weighted sum of the old velocities,
Apvi = 4,v; + AJ‘VJ' + Agvy. (2.41)

Such a substitution redistributes circulation in accordance with area coordinates. Fig-
ure 4 illustrates the triangles before and after vertex removal. If {4 is the vorticity
h about vertex 4 before it is removed, then the vorticity about each of the other three

vertices is increased by an amount ¢ given by

L ¢ = A;C /A

G2 = AxCa/Ar, (2.42)
C3 = AiCa/ A

where

Y G+CG+CG =0
(R

since

Ai+ A+ A = Ay

Therefore, total vorticity is conserved and redistributed in a reasonable and natural

manner.

II1. Surface Tension
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T
:
:: %‘ A. The Algorithm
1 The surface tension at an interface between two materials depends on the curvature
) of the interface. In the conventional numerical representation of surface tension. it is '
': cast into a finite-difference form by fitting vertices on the material interface to some '
parametric function. This function is then used to find an estimate of local curvature. .
, Once the curvature is known. a surface tension force is evaluated and used to accelerate by
3 interface vertices. E
! This scheme fails in SPLISH for two reasons. First, the interface vertices are .
v accelerated directly by surface tension forces evaluated on the vertices. Since velocities '
are centered on triangles in SPLISH, the velocity field sees the effect of the acceleration _
M a half-timestep later, unless a secondary calculation is made. As a result, the pressure !
- calculated within the droplet is inconsistent with that found from the surface tension >
X formula. Second, since the pressure gradient forces and surface tension forces are not .:
Ef calculated in the same manner, numerical errors result which grow with each timestep. I'
Both of these problems are eliminated by a different formulation of surface tension. ;
.-: 4':‘.7 in which a surface tension potential is used to generate the forces. The surface tension !
:‘ force 1s formulated as a gradient of a potential present only at the surfaces. With this A
:‘ method, the pressure gradient forces are calculated in the same manner and on the same .
) grid as the forces derived from the surface tension potential. Therefore both the surface
: tension potential and the pressure are dynamically similar, and the physical pressure 4
‘: drop across the interface must exactly cancel the surface tension forces. Preliminary E
: aspects of this work were described by Fritts et al. {16, 17]. -C
The finite-difference algorithms for surface tension are straightforward. The sur- 2
face tension forces are included through Laplace’s formula for the pressure jump across i
~ an interface 18], ;
‘ pi—po =0 /R, (3.1) h
-
; :
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where p; is the pressure just inside the droplet at the interface. p, is the pressure

just outside the droplet at the interface, o is the surface tension coefficient associated
with the two media which define the interface, and R is the radius of curvature in the
two-dimensional plane. The radius of curvature is positive at points on the interface
where the droplet surface is convex (a circle is convex everywhere) and negative when
the surface is concave. These pressure jumps are included in the Poisson equation for
the pressure. The average pressure, (p; + po)/2, is computed at the interface vertices.
From the average pressure and the pressure jump, we can compute a pressure gradient
centered on triangles, both inside and outside the surface. This pressure gradient is
used in the momentum equation.

The radius of curvature is computed from a parametric cubic spline interpolant to
the interface vertices. Past calculations of droplets oscillating due to surface tension
forces [19. 20] also use cubic spline interpolation. However. they divided the surface
into at least four segments (the top, bottom, right and left sides of the droplet) to
produce an interpolant on each segment. Each interpolant was matched at the joints
to produce an overall curve. The parametric interpolant used here does not require
this special matching.

The parametric spline is produced in the following manner. Denote the interface
vertices by r; = (ri.yi), ¢ = 1,...V, with ry = r;. Also define a pseudo arc length

parameter. s. such that the spline knots occur at the points

s = Ov
. ) (3.2)
s,'=S,‘_1+|I','—l‘,'..1]‘ r=2.0... .. V.
We generate the twice differentiable periodic spline interpolants. r(=) = (x(s). y(s})
from the data {s;}. and {r,}, ¢ = l..... N, as prescribed by DeBoor [21]. The
curvature is then given by
1" t
. _ r' xr .
N=R ‘=¥ (3.3
|l‘""
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where the prime indicates differentiation with respect to the parameter s. The sign of
R at an interface vertex, r;, is given by the sign of - [(r,4; — r,) X (r,—; — r,)].

We can iterate the process if necessary. From the spline fit we can generate new
values for the {s;} by integrating the expression for arc length along a parametrically
prescribed curve. For symmetrically placed vertices on a symmetric droplet. however.
we have found the iteration on arc length parameter is unnecessary.

The parametric spline fit is also used for regridding. When the regridding algorithm
calls for the bisection of a triangle side which borders the two media, a new vertex is
added on the spline interpolant between the vertices. This is done rather than bisecting
the straight-line segment, since a straight-line bisection introduces spurious interface

oscillations. Bisecting the spline maintains a better overall shape for the interface.

B. Test Results

We tested the algorithm for surface tension in SPLISH using two test problems
The first test problem consists of internal capillary waves. In the second test problem
we calculated the oscillation of a droplet due to surface tension. For completeness we
also present calculations of internal gravity waves as a test of the overall hydrodynamic

algorithms in SPLISH.

1. Internal Gravity and Capillary Waves

The linear theory for the small amplitude oscillation of an interface between two

fluids, bounded above and below by solid walls. gives the frequency « as a function of

wavenumber k, _
2 (p=pgk+ak?

= : 3.1
pcothhh + p' coth kh’ t4.1)

Here the upper fluid is of depth A" and density p'. the lower fhud is of depth o and
density p. g is the acceleration due to gravity and ¢ is the coeflicient of surface tension

for the two media. Following the free-surface wave calculations of Fritts and Boris {11,
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we take k =2x/A, A =25 cm. h=h' =10 cm. p =2 g/cc. and p' =1 g/ce. For an
internal gravity wave. we have ¢ = 980 ¢m?®/s and ¢ = 0 dynes/cm. For an internal
capillary wave, we have ¢ = 0 c¢m?/sec and ¢ = 30 dynes/cm. These valies give a
period 7 = 27/w = 0.22073 s for the internal gravity wave and 7 = 0.501906 s for
the internal capillary wave. The amplitude of the oscillation is taken as 4 = 0.0672h.
For this amplitude the free-surface oscillations of Fritts and Boris [1] showed negligible
non-linear effects. Figure 5 shows the initial grid for the mesh size é&s = 0.125 cm.

Figure 6 shows the wave period as a function of mesh size for the internal gravity
wave problem. The ratio of timesteps for any two calculations was the same as that
for the mesh sizes. Each data point on the curve is an average over several periods and
is accurate to three digits. If we extrapolate to zero mesh size using a parabolic least-
squares fit, 7 = 79 + bés + a(6s)* to the data points, we obtain 79 = 0.2214. b = 0.0726.
and a = 0.1549 for this problem. The extrapolated value. 7y, is accurate to 0.3%. The
finite-difference derivatives given in section II are accurate to second order in the mesh
size for triangular grids in which the centroid of a vertex cell is the vertex itself. The
truncation error is linear in the distance between the vertex and the centroid of the
vertex cell. This truncation error can occur in this problem for vertex cells near the
interface in our discretization and hence the linear term in és in the above quadratic
expression. This linear term has a coefficient on the order of the wave amplitide which
is the approximate distortion of the grid. The order of convergence for the algorithm
is essentially quadratic with a small linear contribution.

Figure 7 shows the wave period as a function of mesh size for the internal capillary
wave problem. Here the least-squares fit to the data gives 75 = 0.4995. b = 0.2198,

and a = 0.0640. The extrapolated period is accurate to 0.5%. With surface tension

included. the convergence is primarily linear in the mesh size. The redunction in rate of

convergence is is due to the use of cubic splines to calculate the curvatures. The cubie

spline curve itself is fourth-order accurate. and theorems exist showing the second-order
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‘:}' Q_‘f‘ accuracy of its second derivatives. However. we know of no theorem giving the acenracy
W '
o of the combination of derivatives needed to produce the curvature in Eq. (3.3,
;'t,
0
e 2. Droplet Oscillation.
1l’..
! As a futher test of the algorithm for surface tension in SPLISH. we calculated the
»
~ oscillation of a droplet due to surface tension. Rayleigh [22] derived a linear theory for
'~
¢- . . . . . . . - .
X small amplitude oscillations on cylindrical jets that applies to the cylindrical droplets
& we are discussing. He concluded that when the perturbation is totally in the plane
z perpendicular to the axis of the cylinder. the frequency. . for the oscillation is given
: by
P ’ -
1. Y4 .
' wi = (0’ = n)—, (3.4)
» pa
j& where the surface of the droplet is given in polar coordinates by
Hes
|’ \.‘ 3 -
Y r = a+ ecos{nd). (3.3)
ot
‘ - where p is the density of the jet, a is the unperturbed radius of the jet, and n prescribes
oy -
A
B . . . . . . . .
:-, the mode of oscillation in the plane with amplitude ¢. For large amplitude oscillations.
",
- . : : .
N Rayvleigh found that the experimental frequency diverged from that predicated by the
-
4 ~ . . . .
linear theory. and he attributed these differences to nonlinear effects.
" - . - . ~ .
:’j We have extended Rayleigh’s theory to include the presence of an external fluid.
L4
e - . .
Ny Fquation (3.4) then becomes
>
L]
[ a Sy g
<= (- n)———. {3.6)
iy (Pd + pe)u
t
§ where pq is the droplet density and p. is the density of the external fluid.
\
The tests of the snrface tension algorithm consisted of a series of calculations of
oscillations initiated in the lowest oscillating mode. n = 2 in Eq. (3.61, Also. we hiave
o
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o = 30 dynes/cm.

values which are typical for many practical droplet problems. We discuss resnlrs for
two different sets of conditions. First we consider a droplet density of 2 ¢/ce i o
background external fluid density of 1 g/ce. If we use the definition of the period as

27/w. Eq. (3.6) gives a period
r=113x107°

The second set of conditions are for a kerosene droplet. with density 0.82 g/cc. i a
background of air. with density 0.0013 g/cc. This second case. with the 650:1 density
ratio. is a stringent test of the numerical approximations.

Figure 8 is a composite of frames from a calculation in which € = 0.2¢ = 0.0025 cm
for the 2:1 density ratio case. In this calculation there are 17 vertices in each direction
along the exterior boundaries, 12 vertices on the droplet interface and a total of 313
vertices initially in the calculation. The computational domain is 0.1 ¢m on a side. The
left and right boundaries are periodic while the top and bottom boundaries are solid
walls. The timestep is 6t = 2.5 x 1075 s. The figures shows four and a half oscillations
of the droplet. We can see that as the calculation proceeds. no new vertices have been
added. but in fact some have been subtracted. This was the case because the initial
aridding was adequate to represent the droplet shape. From these calculations. the
period of oscillation is

712 = 1.35 x 1073

Similar calculations with 20 vertices surrounding the droplet (a 20x21 grid) show a
period of

Too = 1.33 x 1073 s.

for 21 vertices surrounding the droplet (a 25x25 grid) we have a period of

72y = 1.31 x 1077 s.
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D :?'.r" and for 28 vertices surrounding the droplet (a 33x33 grid) the period is

L) \.

o s = 1.27T x 1073 5.

Ny

2

;-: In each case. the period does not change during the calculation. Figures 9 and 10 <how
A,' - the initial oscillation for the more resolved cases. For these calculations. it was necessary
::E to decrease the timestep, as discussed below. The time step for the calenlation with 12
5-: vertices surrounding the droplet is such that the period cannot be resolved to better
e than two digits. It appears that the calculations are not converging to the theoretical
. value, but to a value of 1.19 £ .06s. based on the graph of the computed period as a
-.: function of mesh size shown in fig. 11. The convergence is essentially linear as it was
’}'\? in the internal capillary wave test problem, but with a numerical error of about 5.5%
- s for this calculation.

';" Since the internal wave tests show much better convergence properties for the algo-
W

:E rithm, as do previous free-surface wave calculations [1, 2], than the droplet oscillation
- test problem. we performed several other numerical tests on the droplet oscillation
> Aot problem to determine if the poorer convergence properties were due to other numerical
:_.::: parameters.

.-: [irstly. we tested whether the presence of boundaries a finite distance away could
. alter the calculated period by performing calculations in a larger domain of length
;.-: 0.2 ¢cm. Here there were twice as many vertices on the boundary. but still only 12
:.\ vertices surrounding the droplet which was the same size as the droplets in the tests

.

T described above. These calculations showed no change in period. so we conclude that
;',:'.: the effects of periodic boundaries and reflecting walls are negligible.

-:_::' It was also important to evaluate the possible effects of nonlincarity in the socvion.
The theoretical value is from a linear analysis. and the calculation v a Ml non e
es calculation. It is possible that this could account for part of the discrepancy. o e
'\2 this, we performed calculations with smaller amplitudes. ¢ to sce it there wis
~:::' difference in calculated period. The result was that the numerical valine of the neriod
i
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was the same for ¢ = 0.0la = 0.000125 cm over the course of two oscillations as it was
for ¢ = 0.2a. Our conclusion is that the calculations were in a range in which the linear
theory is valid.

We used two diagnostics to determine the period of the computed droplet oscil-

LA

lation. One is the time history of the position of the rightmost vertex on the droplet

interface, denoted by z,.. The other diagnostic is the quadratic moment. defined by

P

LIV NNX

<z’ >= /J:de dy, (3.7)

where the integral is performed over the triangles which define the droplet. Tables I -
IV give the values of < 22 > and z, as a function of time for the resolutions of 12 and
24 vertices surrounding the droplet. From the maxima and minima in Tables I and III.

we can determine the period of oscillation. It is less well defined from the values of r,

i

in Tables II and IV. However, it never differs by more than two timesteps from that

4
2 a s

Xy A 8

given by the moments.

Finally, we examined the oscillations of a kerosene droplet in air. This calculation

,‘i
<.
r

- »

g3 s A ¥ Y4

tests the effects of the external fluid density on the numerical convergence of the pres-
sure algorithm as well as any role the external fluid may have in introducing higher
frequency modes. Here the theoretical value of the period is 5.9x 10~* s. Using a resolu-

tion of 12 vertices around the droplet surface. we find a computed value of 7.1 x 1074 s.

»

The ratio between the theoretical and numerical results is 0.83. compared to a ratio

NAAAM

of 0.84 for the 2:1 density ratio calculation at the same resolution. Since changing the

wN

density ratio from 2:1 to 6530:1 did not alter the relative error. we conclude that only

-

rEeT l"."_ g

minor errors arise by including of the external fluid in the calculation.
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'L.» C. Some Difficulties and Limitations

We now believe the that the inability of the method to produce as accurate a
solution for the droplet oscillation test problem as for the internal wave test problemns is
a combination of the physical problem itself and the spline approximations to curvature.

The surface tension algorithm discussed above suffers a basic problem in curve
fitting. We are tryving to approximate an unknown continuous function by a known
curve through a finite number of points or computational cells. For example. we are
trying to represent the droplet interface or capillary wave interface by a spline fit to
a finite number of points. Whereas an accurate interpolant can be found that goes
through a set of points. it is not always clear that the other properties of the curve
calculated at the points. e.g., the curvature, are well represented by this interpolant.
Splines are notorious for introducing spurious oscillations between the points defining
them initially.

Figure 12 shows the curvature at each vertex around the droplet. The exact
curvature for the initial drop is compared to the curvature produced by the spline

S interpolant and to curvatures produced after one oscillation is completed. The initial

curvature. defined by splines on the interface vertices, is reasonable. However. by the
end of a cvcle. there are spurious oscillations even though the curvature has the same
basic shape.

; In the internal capillary wave problem. the range of values for the interface curva-
ture was a factor of 15 smaller than for the droplet oscillation problem. As a result the
interface curvature for the internal capillary wave is determined with greater accuracy.
In the droplet oscillation problem where the interface “bends™ more sharply. the spline
has a greater difficulty approximating the curvatures accurately.

Interpolations can cause other problems in the calculations. Our calculations have
shown that the final result can be affected by the location of additional vertices used
to obtain a better initial approximation of the droplet inteiface. The grid initialization

procedure involves two phases: a first phase to generate a course grid. and a ~ccoud
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phase which refines the grid produced in the first phase. During the refinement phase.
we have two chices for the location of new interface vertices. The initial grid produced
in Fig. 8 placed new vertices on the droplet defined by the Rayleigh oscillation mode.
We could also add the vertex on the existing spline interpolant. Figure 13 shows < ¢* >
as a function of time for the two types of initialization. The curve labelled 1 is the
calculation in which the additional vertices were placed on the Rayleigh drop. The
curve labelled 2 placed the additional vertices on the spline fit. After one oscillation.
the value of < z? > differs by 8%. After one oscillation the value of < zr° > on the
curve with label 1 is lower than the initial value of < z? > and the value of < z® > on
the curve with label 2 is higher than the initial value of < z* >. Notice also that the
period. as weil as the amplitude, is affected by the type of initialization.

In Fig. 8 we see that the amplitude of the droplet oscillation decays as a function
of time even though the period is not changing. The damping rate is about 18% per
oscillation. The shape of the droplet at the end of the calculation is notably different
than it was at that same place in an earlier oscillation cycle. In the ideal case. this
would not occur.

The decay of the oscillation is also apparent in the moment < z° > and the
variation in the location of r, from oscillation to oscillation. It is apparent from Fig. 14
that the < z? > moment is dissipating, and it is apparent from Fig. 15 that the overall
shape of the droplet is changing. Energy associated with this lowest-mode oscillation
is going into other modes. which is reflected in the reduction of the timestep required
to keep the computations stable. In general. to carry out these droplet oscillation
calculations it was necessary to reduce the timestep to the point where we could resolve
the highest mode of oscillation the droplet could support at a given resolution. \When
we doubled the resolution around the droplet. we found that the timestep had 1o he
decreased by a factor of about about 2.8, This is consistent with the analvsis which

. . . . . ) . N
says that since the period is inversely proportional to n?/2. where n is the mode of
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oscillation. Increasing the resolution of the droplet interface by a factor of 2 means

T RTeR TRt TR T e

that the timestep must decrease by a factor of 23/% ~ 2.3,

A physical mechanism for the observed decay in the n = 2 normal mode oscillation
is the existance of a resonance between the n = 2 and the n = 3 normal modes: that is
«3 = *2ws. A similar behavior in three dimensions has been analvzed by Natarajan and
Brown [23]. In their three dimensional analysis. significant energy can be trausferred
from one resonant mode to another within ten oscillations.

In summary, the total damping rate for the droplet oscillation calculation is roughly
18% for the n = 2 mode. Much of the energy from this mode is transferred to higher

harmonics. as evidenced by the calculated droplet shapes, curvatures and the numerical

timestep limitations. The difference in initialization procedures alone produced an 3%

R B

change in amplitude. Since the total numerical error is 5.5%, we conclude that the
majority of this error arises from the inability of the spline fit to approximate large

curvatures accurately. This error is large enough to mask other error contributions,

CRW b W R ape

so that we cannot evaluate additional error terms other than to indicate that they are

.
'.

apparently much smaller than that due to the spline fit.
However, despite all the problems with spline fits, we found that they provided a
good way to calculate curvature. In the search for better curvatures. we have also

tried other methods. none of which produced better results. \We enumerate these

T A AN AN

attempts both for completeness and to emphasize that better numerical approximations

for curvature are still needed to permit more accurate calculations of surface tension.

L,

(1) We averaged the curvature between the vertices. such that

: 1 JaE
K = ———/ K (s)ds.
Si+l - ‘Sl—] 8,1

The results were found to depend sensitively how how rhe inrearal was actnally

LA -{ ¥

performed. However. integration prodiuced results whicl were no hetrer thian the

-\

pointwise curvatures discussed above.
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Ve smoothed the curvatures /; with a least squares linear spline. This tethod

LY
%
®

worked well for one period. but the method failed on subsequent oscillations.
(3) We used a circular arc to calculate the curvatures. A circle was placed thronah

the three adjoining vertices. The radius of that circle was used as the radius

of curvature for the interface at the center vertex of the three vertices. This
method did not work at all. The droplet interface distorted wildly within the first

¥ oscillation.

(4) We used splines under tension. This approach introduced a free parameter which

could not be consistently determined.
(3) Based on the experiences of Foote [20], we tried producing an interpolant through
i’ every other vertex and averaging the result. The motivation was that fewer points
- could introduce fewer oscillations, and that averaging the interpolants could damp
the oscillations. This produced poor results. The calculation is really the average
of two calculations with half the original accuracy.

(6) We considered but did not implement nonlinear splines [24]. Although these splines

o
P

produce differentiable curvatures, there is no guarantee that there exists such a
- spline through a given set of points and, if such a spline does exist. there is no

guarantee that it is unique.

(7) We considered several methods for calculating an interpolant based on the Rayleigh

modes. The high mode oscillations could then be eliminated. None of the
! schemes we considered gave better results than the spline interpolant. and all
: introduced arbitrary parameters into the calculation. These parameters conld he
well-determined for a particular known shape. but could not be deterpnned for a

general unknown shape.
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IV. Incompressible Flow about a Droplet

In this section we present some preliminary calculations of forced, asymmetric
drop oscillations induced by flow around a droplet. These calculations include both
the effects of viscosity and surface tension. The capability of studying such flows for
highly viscous droplets in shear flows. in two and eventually in three dimensions. is the
motivation for developing the viscosity and surface tension algorithms.

The initial conditions we used specified an initially steady-state potential flow
about a periodic series of cylinders. Again, the boundary conditions on the left and
right sides are periodic, and the upper and lower boundary conditions are reflecting
walls. Initially, a perfectly circular droplet is at rest in a background flow. A physical
situation modelled by such an initialization might occur if the flow velocity were ramped
up to its final value before any significant structure could develop in the flow, and before
the droplet could pick up any substantial velocity. Basically, it is a smooth start for the
calculation. Previously we had performed calculations which began with an impulsive
start, but found that as a result there was a large amount of momentum transferred
across the droplet interface early in the calculation.

The calculations presented here model the forced fluid flow due to a fast air stream
about an initially stationary kerosene droplet. The physical parameters, given in Ta-
ble V. are appropriate for a combustor environment. A total of 309 vertices were used
to initialize the problem. with 12 vertices at the droplet interface. Figure 16 f{ullows
the evolution of pathlines in the internal and external flow fields through a scries of
timesteps. For an air velocity of 100 m/s and a droplet radius of 123 microns, the cor-
responding Revnolds number is roughly 1600. The pathlines are detined by the patiis

of vertices over five timesteps. By the last frame of Fig. 16. the fluid originallv 1o ~he

left of the droplet has progressed through the mesh and interacted with the face ot

(next) droplet.
The first clear indication of the development of the recirculation region s <cen

in the fourth frame of Fig. 16, which shows a pair of counter-rotating vortices. [l

33

LS L VCIE ST R T U R

PP N A N L SRg ey

2 dhendion S il AR B ol bl

taint ool i




Eahh St A ) Vol LANRE LRGN Lt a el

‘ - . .
X f}{: recirculation zone continues to develop throughout the calculation. although ar times
A the vortex pair is not as evident due to the deletion and addition of vertices. wihich
3..

)

interrupts the continuity of the pathlines. By the last frame. another pair of vortices

is forming near the droplet. and the original pair has been shed. The leading fuce of

w the droplet is now quite distorted. and the droplet is about to enter the wake ot tle
i.' preceding droplet.
;' Distortions in the face of the droplet are evident in at least the seventl f{rame.
Y These distortions occur because the curvature has increased and the streamlines of
o the streamlines in the external flow are condensed by the approaching wake. The
,:a.‘ . internal velocities are small compared to the external flow rates and therefore cannot
Ec' be distinguished as pathlines. However. indication of the (small) internal recirculation
a may be obtained by comparing internal vertex positions at various timeteps.
‘r Figure 17 shows the grid at times in the calculation corresponding to those in
": Fig 16. During the course of the calculation, a great deal of vertex addition and deletion
ib has occured. Vertex addition, however, is most noticeable in the wake of the droplet
' \a:_.r, and around the droplet interface. Whereas there were 300 vertices at the beginuing of
L]
'_',E the calculation. there are 450 at the end.
E:E: Figure 18 shows the pathlines for a simulation with the air speed increased to 120
m/s. corresponding to a Reynolds number of 2000. The fluid now completely passes
'_‘:,- through the mesh. The fluid initially near the droplet has completely passed the next
| ‘:: droplet by the time the calculation was terminated. The nitial flow about the droplet
'::-:: is similar to that shown above, except for a more pronounced tlattening at the face
.':i' of the droplet due to the higher flow speed. The wake develops i much the ~ame
:'j: manner. but it now interacts strongly with the flow at the forward staguation pont oo
:-::E the droplet. Oscillations in the flow due to the wake are transmitted to the T
“ face of the droplet and give rise to fairly large perturbations.
\: As seen in Fig. 19. the computational grid needs further retinement at this raue
:S': because the perturbations cannot be resolved by the limits set on minimum " lange
o
34
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size originally chosen for the calculation. A sign that the calculation is nnder-resolved
i» that one of the crests of the surface wave is spanned by a single triangle. a situation
which allows no communication of that surface fluid with the interior of the droplet. [n
order to continue the simulation. better resolution must be obtained about the droplet
surface. Another algorithm is currently being included to allow higher resolution near

points of large curvature at material interfaces.

V. Summary and Conclusions

This paper presented the current algorithms included in the code SPLISH. a two-
dimensional Cartesian Lagrangian treatment of incompressible flows with a dynamically
restructuring grid. The new rotator algorithm is an improvement on the one previously
used for conserving circulation. The residual algorithm ensures conservation of the area
of cells. These algorithms together with the original SPLISH framework constitute an
extremely flexible code for calculating incompressible flows in highly distorted geone-
tries or with obstacles in the flow.

New algorithms for modelling the physical effects of viscosity and surface tension
have been added. Whereas adding the viscosity algorithm was relatively straighittor-
ward. adding surface tension caused a number of numerical problemns. Detailed honchi-
marks of the final algorithm selected were presented using internal capillary waves and
a Rayvleigh oscillating droplet as test problems. The surface tension algorithm. bused
on spline fits to Jdetermine curvature, allowed the droplet to oscillate many titnes andd
still maintain a constant period. The numerical tests on the internal capiilary waves
indicate that the surface tension algorithm produced a couvercence rare whii .~ T
var in the mesh size. whereas the basic hvdrodyvnamic aleorithnns are qruadrario o
mesh size for ideal meshes. The droplet oscillation test proiven Lowever oo

sotne diffiendties wirh the spline fits for curvature when the mrerliee hecames o

distorted.
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e @ Previous numerical calculations of oscillating spherical droplets with surtace toq-
sion and viscosity using a marker-and-cell method showed only one oscillation of &
g water droplet in air [20]. and thus did not give any information about the subsequent
behavior of the mode amplitudes. These calculations used 2.5 times the resoliution of
our most resolved calculations. Their calculated period differed from the theoretical
" period by 6% compared to our 12% for a similar initial deformation. Their viscous
v._r.: calculations failed to damp as quickly as required by theory which may indicate that
o) . . .
e they suffer from a similar problem of approximating curvatures.

We presented calculations showing how a kerosene droplet deforms and sheds vor-
tices in the wake of a shear flow. Calculations of fluid flow in and around fuel droplets
are important in the study of spray combustors. The flow patterns influence droplet

breakup, evaporation and burning rates.
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Table |
16 x 16 grid

time last period <1t >

0.0000 0.3061E-07
0.6500E-03 0.1426E-07
0.1300E-02 .0013 0.2929E-07
0.1973E-02 0.1497E-07
0.2600E-02 0013 0.2821E-07
0.3250E-02 0.1563E-07
0.3900E-02 .0013 0.2711E-07
0.455GE-02 0.1626E-07
0.5200E-02 .0013 0.2627E-07
0.3830E-02 0.1677TE-07
0.6500E-02 .0013 J.2356E-07
0.7150E-02 0.1718E-07
0.7775E-02 001275 0.2493E-07
0.3423E-02 0.1757E-07
0.9075E-02 .0013 0.2435E-07
0.9725E-02 0.1793E-07
0.1037E-01 0013 0.2387E-07

U1 106E-01 0.1327E-07
0.1165E-01 001275 0.2349E-07
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Ta

16 % 16 grid

ble 11

timne

last period

Xy

0.0000
0.6250E-03
0.1323E-02
0.1975E-02
0.2600E-02
0.3275E-02
0.3900E-02
0.4350E-02
0.5223E-02
0.5825E-02
0.6525E-02
0.7150E-02
0.7775E-02
0.3430E-02
0.9050E-02
0.UT25E-02
0.1037E-01
0.1100E-01
U.1167E-01

001323

001275

0013

001325

.0013

00125

001325

0013

0.1500E-01
0.9974E-02
0.1486E-01
0.1046E-01
0.1463E-01
0.1064E-01
0.1423E-01
0.1078E-01
0.1400E-01
0.1104E-01
0.1392E-01
0.1131E-01
0.1378E-01
0.1140E-01
0.1355E-01
0.1146E-01
0.1335E-01
0.1159E-01
0.1332E-01
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‘ Table III
L 24 x 24 grid
time last period <7 >
: 0.0000 0.3513E-07
' 0.6594E-03 0.1628E-07
\ 0.1306E-02  .00131 0.3420E-07 3
0.1966E-02 0.1637E-07 :
| "}
» \
' +
]
Cd e
Table IV 3
- (o 24 x 24 grid '
; - time last period Iy :
: 0.0000 0.1500E-01 N
: 0.6594E-03 0.1038E-01 rd
0.1230E-02 00125 0.1503E-01 i}
" (0.1031E-02 0.1015E-01 3
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L "
A .
) density of kerosene 0.82 g/cc
A
2 density of air 0.0013 g/cc .
_ surface tension (STP) 30 dynes/cm
[~ viscosity of kerosene 1.8 centipoise 9
~ . . . .
N viscosity of air .018 centipoise ‘
¥ . . -
alr velocity 100 or 120 m/s
o initial droplet velocity 0.0 m/s
oy ) .
: droplet radius 125 microns ]
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Figure Captions

R

{0
‘ Figure 1. A section of a triangular grid showing a) a material interface. bi a vertex-
v
A cell.
..l
Wi Figure 2. A test problem for conservation of circulation. a) The initial flow pattern.
. b) The velocities after a half-time step. ¢) The velocities after the old roturor
e ® o
N .
¥ ) :
L:..,v operator is applied.
\‘: —~. p . . _ . . .
n Figure 3. a) Definition of the angles 8% and 6~ for the diagonal line drawn from j 1o /.
N
Aty . ye . .
) The angles #'t and #'~ formed by connecting the other quadriliateral diceonal,
"'-; Figure 4. a) Vertex 4 isolated within a larger triangle before its removal. b, The
B
Wy larger triangle remaining after deletion of vertex 4 and three associated sides and
!
e triangles.
et Figure 3. The initial grid for the internal wave test problems.
A : . : . . .
' Figure 6. The period 7 as a function of mesh size for the internal gravity wave test
~0
Ca
S, problem.
\"
by . Figure 7. The period t as a function of mesh size for the internal capillary wave test
Ry FA
. problem.
~ ['igure 8. A composite of frames from a calculation of an n = 2 normal iade
droplet oscillation with 12 vertices around the droplet: p, = 1 gfce. py = 2 2 oo,
" 7 = 30 dynes/cm. ¢ = 0.0123 cm. Each frameis u.l x 0.1 em-.
‘. -
-, : : . .
™ Figure 9. A composite of frames from a calculation of an n = 2 normal mode droplet
o
:3( oscillation with 24 vertices around the droplet. Same conditions as in Fig. 7.
g -
Ca)
o™ . . .
[ignre 10. A composite of frames from a calculation of an n = 2 normal mode droplet
‘,'; oscillation with 28 vertices around the droplet. Same conditions as in Fig. 7.
, Fignre 11. The period as a function of mesh size for the droplet oscillation probici.
[ Fignre 12, Curvature as a function of vertex index around the drop in the 11 <
- ralculation. (1) Exact solution: (2) initial spline: i3 atter one oscillation.
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SO Figure 13. The moment < r* > as a function of time for two initializations: 1 ..
initial vertices on the Ravleigh drop: (2) initial refining vertices on the <o
s interpolant.

Fignre 14. The moment < r° > as a function of time in the 16 x 16 calculation.
Figure 15. The position of the rightmost vertex. r,, as a function of time in the 6 «

16 calculation.

Figure 16. Pathlines from a caiculation of air flowing past a deforming. viscous kerosene

-

AL LELS

h >

droplet. Surface tension forces are included at the material interface. Heads of

pathlines are the current vertex positions and the tails are made up of the previous

?‘>- ‘7 s"l.ln.’l.

five positions. The flow speed is 100 m/s and Re = 1600.
Figure 17. Frames showing the triangular grid at the same times as shown for the

pathlines in Fig. 14.

Figure 18. Pathlines from a calculation similar to that shown in Fig. 14, but with a

e

o

flow velocity of 120 m/s and Re =~ 2000.

h ]

Fignre 19. Frames showing the triangular grid at the same times as shown for the

-+ Y3
N
A

pathlines in Fig. 16.
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A

Consider an inviscid shear flow on the grid shown in Fig. 2a. Triangles above
y = 0 have a velocity v; = —1, and those below have a velocity v, = +1. If after
one step the vertices have moved as in Fig. 2b, conservation of circulation through
Eq. (2.18) imparts a y-component to the velocities for those triangles bordering the
shear. Although the circulation integral about each vertex in the grid is conserved, the
flow is now no longer independent of y.

To obtain a better formulation of the transformation R we must consider Eq. (2.17)
more carefully. Since Eq. (2.17) is linear in the unknowns {¥;}, we can obtain the change
in triangle velocities by considering the change produced by the movement of a single
vertex c. with coordinates r., and sum the resultant expression over all vertices. It is
reasonable to assume that the rotator should change only the velocities of the triangles

which have ¢ as a vertex. As a result, conservation of circulation gives
Vigr2 (0 =i )+ Voo (risy—r0) = Vigyye (v —rip1 )+ Vi oo (ricy—r?) (2.19)

for each vertex : about ¢. We have used r; = r} = r? for those vertices which are
stationary. If only vertex ¢ moves. the cell area at vertex c is constant. so that vorticity
is conserved about vertex ¢ as well. However. at all neighboring vertices, circulation.

not vorticity, is conserved. By introducing the notation
OVigr/a = Vigr2 — Vigin

and

p— n

bro=r —r?

Eq. (2.19) may be rewritten as

Evigrya (vl —rip) +eviy - (ricy —vl) = (Visy 0 = Vigr2) - fre (2.20)
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